All Saints CE Primary School CALCULATION POLICY (2022-23)
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Author:</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Approved by:</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Date:</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">January 2023</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Review due by:</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Author: | |
| :---: | :--- |
| Approved by: | |
| Date: | January 2023 |
| Review due by: | |</table-markdown></div>

At All Saints, our curriculum lays out the way we teach our children to achieve our mission statement;

The curriculum consists of all the planned activities and routines that we organise in order to promote learning, confidence and self-esteem. It includes not only the formal requirements of the National Curriculum, but also the range of extra-curricular activities that the school organises in order to enrich the experience of the children. The children at All Saints are provided with a an inter connected curriculum that promotes meaningful connections between concepts and knowledge develops genuine and robust character traits to prepare children for life in the modern world and opportunities for children to use and apply their Head and Heart to answer learning questions resulting in knowledgeable, physically and mentally healthy children that achieve their potential and have a solid foundation to become life-long learners.

RATIONALE

This policy has been largely adapted from the White Rose Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. It aims to ensure consistent strategies, models and images are used across the school to embed and deepen children's learning and understanding of mathematical concepts. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. It has been written to ensure consistency and progression throughout the school.

The progression of strategies and written methods has been set out so that the children develop the understanding of the four operations. Our aim is to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task. Consistency in language is essential for pupils to understand the concepts presented in mathematics. For example, in terms of place values 'ONES' will be used consistently across the school. This will support children right from EYFS to KS2 to build on prior knowledge.

At All Saints we follow the Concrete, Pictorial, Abstract (CPA) approach where children use concrete objects to help them make sense of the concept or problem; this could be anything from real or plastic fruit, to straws, counters or cubes. This is then developed by the use of images, models and children's own pictorial representations before moving on to the abstract mathematics. Children will travel along this continuum repeatedly, often revisiting previous stages when a concept is extended. It is also worth noting that if a child has moved on from the concrete to the pictorial, it does not mean that the concrete cannot be used alongside the pictorial. In fact, this is essential for the children to understanding the connection between them. Alternatively, if a child is working in the abstract, 'proving' something or 'working out' could involve use of the concrete or pictorial.
Similarly, although the strategies are taught in a progressive sequence, they are designed to equip children with a 'tool box' of skills and strategies that they can apply to solve problems in a range of contexts. Therefore, as a new strategy is taught it does not necessarily supersede the previous, but builds on prior learning to enable children to have a variety of tools to select from. As children become increasingly independent, they will be able to and must be encouraged to select those strategies, which are most efficient for the task.
The strategies are separated into the four operations for ease of reference. However, it is intended that addition and subtraction, and multiplication and division will be taught together to ensure that children are making connections and seeing relationships in their mathematics. Our aim is to get each child to show fluency, reasoning and problem solving skills from EYFS - Year 6. Effective teaching of the strategies rely on increasing levels of number sense, fluency and ability to reason mathematically.

Children must be supported to gain depth of understanding within the strategy through the CPA approach and not learn strategies as a procedure. The long-term aim is for children to be able to select an efficient method of their choice that is appropriate for a given task. They should do this by always asking themselves:
'Do I need to use manipulatives to help me?'
'Can I do this using drawings or jottings?'
'Do I need to use a written method?'
'Can I do this in my head?'

Reception - Addition			
Objective/strategy	Concrete	Pictorial	Abstract
Early learning goal: add and subtract two single-digit numbers and count on or back to find the answer			
Add two single digit numbers Count on	Use counters, cubes or other concrete resources to count out the correct amount for each number in the calculation and then combine them to find the total		Use number cards to replace the images and this will help reinforce the use and recognition of numbers

sormoe maser			
	$\stackrel{\bullet \bullet \bullet \bullet}{0} 0$	$\begin{aligned} & 0 \theta \theta \theta \\ & 000 \end{aligned}$	

Year 1 - Addition			
Objective/Strategy	Concrete	Pictorial	Abstract
End of Year Objective: Add one-digit and two-digit numbers to 20 , including 0 , using concrete objects and pictorial representations, and missing number problems such as $7=$? -9			
Combining two parts to make a whole Part- whole model	Use cubes to add two numbers together as a group or in a bar. \square Use part, part whole model.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 7=4+3 \\ & 4+3=7 \end{aligned}$ Include missing number questions to support varied fluency: $\begin{aligned} & 7=?+3 \\ & 4+?=7 \end{aligned}$
Starting at the bigger number and counting on Counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

	Qeceeceece 7 man (1)		
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10.	$7+4=11$ If I am at seven, how many more do need to make 10 ? How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20 More than	2 more than 5 .		Include missing number questions: $\begin{gathered} 8=?+3 \\ 5+?=8 \end{gathered}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' '2 more than 5 is 7 .' ' 8 is 3 more than 5.'

Year 2 - Addition			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Add numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; three one-digit numbers. Add numbers with up to three digits, using formal written method of columnar addition (For those who are ready to record in this way).			
Adding multiples of ten Dienes and beads	Model using dienes and bead strings $50=30=20$	Use representations for base ten	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20<\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\square+1=16$ $16-1=\square$ $1+\square=16$ $16-\square=1$

Using known facts Partitioning/place value		Children draw representations of H, T and O $\begin{aligned} \because+\because & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+\square \square & =\begin{array}{r} \square 日 \square \\ \square \end{array} \end{aligned}$	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part whole and number line method to model $17+5=22$	$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a 2 digit number and tens	Children to explore and understand that when adding tens, ones does not change $25+10=35$	Counting on in tens on a number line	Using tens place value to find the missing number $27+10=37$ $27+20=47$ $27+\square=57$

Add two 2-digit numbers	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary. Children can also draw a representation of the grid to further support their understanding, carrying the ten under the line 34 +1 7	Use partitioning initially then building on to column addition $\begin{array}{r}T \\ \hline 6 \\ +2 \\ \hline 2 \\ \hline \\ \hline\end{array}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	Combine the two numbers that make/ bridge ten then add on the third. $\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$

Year 3-Addition			
Objectiv/strategV	Concrete	Pictorial	Abstract
Column Addition-no regrouping			Add the ones first, then the tens, then $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
$\begin{aligned} & \text { Column Addition with } \\ & \text { regrouping. } \end{aligned}$		Children can draw a representation of the grid to further support their understanding, carrying the ten under the line	Use formal column method and children to understand the concept of regrouping as number is regrouped in the next place value. Use partitioning where required.

Year 4 - Addition

Objective/strategy	Concrete	Pictorial	Abstract

End of Year Objective:

Add numbers with up to 4 digits and decimals with one decimal place using the formal written method of columnar addition where appropriate.

Year 6 - Addition

Objective/strategy	Concrete	Pictorial	Abstract

End of Year Objective:

Add whole numbers and decimals using formal written methods (columnar addition).

add several numbers of increasing complexity	Use variety of concrete resources as in Year 4 and 5 to embed understanding of concepts when adding numbers of increasing complexity	Use similar pictorial representations as in Year 4 and 5	Children should extend the carrying method and use it to add whole numbers and decimals with any number of digits
Including adding money, measure and decimals with different numbers of decimal points.			42
			$\begin{array}{lllll}6 & 4 & 3 & 2\end{array}$
			$\begin{array}{lll}7 & 8 & 6\end{array}$
			3
			+ 46881
			$\begin{array}{llllll}1 & 1 & 9 & 4 & 4\end{array}$
			I I 2 I
			$\begin{array}{lllllll}4 & 0 & 1 & 2 & 0\end{array}$
			$2 \quad 6 \quad 8 \quad 5$
			$+\quad 0 \quad 7 \quad 1$
			4 2 8 7 6
			1
			When adding decimals with different numbers of decimal places, children should be taught and encouraged to make them the same through identification that 2 tenths is the same as 20 hundredths, therefore, 0.2 is the same value as 0.20 . This is known as a placeholder.

Year 1 - Subtraction			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective:Subtract one-digit and two-digit numbers to 20, including zero (using concrete objects and pictorial representations).			
Taking away ones.	Use and move physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister?

Represent and use
number bonds and
related subtraction facts
within 20

Bar model Including the inverse operations.	$5-2=3$			
			8	2
			$10=8+2$	
			$10=2+8$	
			$10-8=2$	
			$10-2=8$	

Year 2-Subtraction

Objective/strategy	Concrete	Pictorial	Abstract

End of Year Objective:

Subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two twodigit numbers. Subtract numbers with up to three digits, using formal written method of columnar subtraction.

| Regroup a ten into ten
 ones | Use PV chart to show how to change a
 ten into ten ones, use the term 'take and
 make' | $20-4=16$ | |
| :--- | :--- | :--- | :--- | :--- |
| Partitioning to subtract
 without regrouping. | Use Dienes to show how to partition the
 number when subtractine without
 regrouping.
 $34-13=21$ | Children draw representations of Dienes and
 cross off.
 'Friendly numbers' | $43-21=22$ |

Year 3 - Subtraction

Objective/strategy	Concrete	Pictorial	Abstract

End of Year Objective:

Subtract numbers with up to three digits, using formal written method of columnar subtraction using the same methods learnt in Year 2.

Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model 47-32	Draw representations to support better understanding using images	Intermediate step may be needed to lead to clear subtraction understanding. $\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline 32 \\ -\frac{12}{20} \end{gathered}$
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to place value counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange	Children may draw base 10 or place value counters and cross off to work out the subtraction	Begin by partitioning into place value columns if necessary for children's better understanding By the end of Year 3 children should be be able to use formal method for 3 digit numbers

Year 4 - Subtraction			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Subtract numbers with up to 4 digits and decimals with one decimal place using the formal written method of columnar subtraction.			
Subtracting tens and ones subtract with up to 4 digits. Introduce decimal subtraction through	Model process of exchange using Numicon, base ten and then move to place value counters.$234-179$	Draw and show excahnge just as in Year 3	By the end of Y4, children should be using the written methoc confidenty and with understanding. They will also be subtracting: -numbers with different numbers of digits, understanding the place value; -decimals with one decimal place, knowing that the decimal points line up under one another.
			6 1 --4 4 7 5 1 - 3 2 8 6 1 4 6 8

Year 5 - Subtraction				
Objective/strategy	Concrete	Pictorial	Abstract	
End of Year Objective: Subtract whole numbers with more than 4 digits and decimals with two decimal places, using the formal written methods (columnar subtraction).				
Subtract with at least 4 digits, including money and measures. They will also be subtracting: -Numbers with different numbers of digits, understanding the place value; -Decimals with up to two decimal places (with each number having the same number of decimal places), knowing that the decimal points line up under one another. -Amounts of money and measures, including those where they have to initially convert from one unit to another	Same as Year 4 Model process of exchange using Numicon, base ten and then move to PV counters. $234-179$	Draw and show excahnge just as in Year 3	6 6 7 0 7 -3 2 2 6 3 8 4 6	2 13 -1 -4 2 - 1 7 6 1 6 6

Year 6 - Subtraction			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Subtract whole numbers and decimals using formal written methods (columnar subtraction).			
Subtract with increasingly large and more complex numbers and decimal values.	Just as Year 4 Model process of exchange using Numicon, base ten and then move to place value counters. $234-179$	Draw and show excahnge just as in Year 3	5 13 - 6 4 3 2 4 6 8 1 1 7 5 1 When subtracting decimals with different numbers of decimal places, children should be taught and encouraged to make them the same through identification that 2 tenths is the same as 20 hundredths, therefore, 0.2 is the same value as 0.20 .

Reception - Multiplication			
Objective/strategy	Concrete	Pictorial	Abstract
Early learning goal: Children solve problems, including doubling.			
Experiencing equal groups of objects They will think about doubling when solving practical problems.	Children use variety of concrete objects including cubes, animals, blocks, beads etc		$2+2=4$

Year 1 - Multiplication			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.			
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples ($2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$)	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. 	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw and make representations Draw	$2 \times 4=8$

Repeated addition

Year 2 - Multiplication			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Calculate mathematical statements for multiplication (using repeated addition) and write them using the multiplication (x) and equals ($=$) signs.			
Doubling	Model doubling using dienes and place value counters. Double 26	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$

| | III \|III III |III | $\begin{array}{\|ccc\|} \hline \end{array}$ | $4 \times 3=$ |
| :---: | :---: | :---: | :---: |
| | | | |

	$\begin{aligned} & 200 \\ & 09019 \end{aligned}$		

Year 6 - Multiplication

Objective/strategy	Concrete	Pictorial	Abstract

End of Year Objective:

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
Multiply one-digit numbers with up to two decimal places by whole numbers.

Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	$\begin{gathered} 368 \times 6 \\ \hline x \\ \hline 6 \\ \hline \end{gathered}$	$\begin{array}{r} 300 \\ \hline 1800 \end{array}$	60 360	8 48	$\begin{array}{r\|r} & 1800 \\ \hline+ & 360 \\ \hline+ & 48 \\ \hline-\quad 2208 \\ \hline & 11 \end{array}$	$\begin{array}{r} \text { Th H T U } \\ 368 \\ \times \quad 6 \\ \times \quad 48 \\ \hline 360 \\ \hline 18 \times 6) \\ +1800 \\ \hline 2208 \\ \hline 2060) \\ \hline \end{array}$ Th H T U $\begin{array}{r} 368 \\ \times \quad 6 \\ \hline 2208 \\ \hline 44 \end{array}$
			600 12000 2400	90 1800 360	3 60 12	$\begin{aligned} & =13860 \\ & =2772+ \\ & 16632 \end{aligned}$	Children should only be expected to move towards this next method if they have a secure understanding of place value. It is difficult to explain the compact method without a deep understanding of place value. 693×24 Step 1 TTh Th H T U $\begin{array}{r} 693 \\ \times \quad 24 \\ \hline 2772 \\ \hline y+293 \times 4) \end{array}$ Step 2 Th Th H T U $\begin{array}{r} 693 \\ \times 24 \\ 2772 \\ +1693 \times 4) \\ +180(693 \times 20) \end{array}$

	Concate	Recepion - - ivision	
	ma		
	mommemm	9	15
	mammem	N	1-13
		5	-
	遇		

Year 1 - Division

Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.			

Children will continue to solve division problems using practical equipment and jottings. They should use the equipment to share objects and separate them into groups, answering questions such as 'If we share these six apples between the three of you, how many will you each have? How do you know?' or 'If six football stickers are shared between two people, how many do they each get?' They may solve both of these types of question by using a 'one for you, one for me' strategy until all of the objects have been given out.

Children should be introduced to the concept of simple remainders in their calculations at this practical stage, being able to identify that the groups are not equal and should refer to the remainder as '... left over'.
Division as sharing

jiefivestrates $\$ Conctete & Concete & Pitcorial & Abstat \hline \multirow[t]{6}{*}{} & & ulatame & \hline & & & $12 \div 3=4$			
		兆逐	
		$\underbrace{}_{8+2=4}$	
		5	
		.000.0. 0.0 .0.0	

Division as grouping | Divide quantities into equal groups. |
| :--- |
| Use cubes, counters, objects or place value |
| counters to aid understanding. |

Division with remainders

The children may begin to divide numbers where the dividend is beyond their tables knowledge.

E.g. $56 \div 4=14$

Some more able children may be encouraged to make use of known mental facts for this. In this case thinking of 56 as being made up of 40 and 16 and knowing that $40 \div 4=10$ and
$16 \div 4=4$
The teacher will use their professional judgement to make a decision about when children may see the traditional layout of division:
14
4) 56

Children should be able to solve real life problems including those with money and measures. They need to be able to make decisions about what to do with remainders after division and round up or down accordingly.

Year 4-Division			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Divide numbers up to 3 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.			
Divide at least 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder.

Year 5 - Division			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.			
Divide 4 digit by 1 digit number Short division	Dienes may continue to be used to model the method of division where necessary. Children will develop their skills with increasingly big numbers including calculations where there is exchange from the first number and then where there is exchange within the number. I.e. no carry from thousands to hundreds in the example underneath. $\left.\frac{1271}{4)} \quad \frac{1054}{5^{1} 0^{2} 84} \quad 7\right)$	Encourage them to count in multiples to divide more efficiently. Children may draw representations where necessary	$\frac{1054}{7) 73^{3} 7^{2} 8}$ Move onto divisions with a remainder. $0663 r 5$ $8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }$ Finally move into decimal places to divide the total accurately.

Year 6 - Division			
Objective/strategy	Concrete	Pictorial	Abstract
End of Year Objective: Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Use written division methods in cases where the answer has up to two decimal places.			
Short division	Dienes may continue to be used to model the method of division where necessary.	Encourage them to count in multiples to divide more efficiently. Children may draw representations where necessary	$\frac{1054}{7)} 73^{3} 7^{2} 8$ Move onto divisions with a remainder. $\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$ Finally move into decimal places to divide the total accurately.

				4	6

h to
 041 R1 4) 165

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto
0400 R7
$8 \longdiv { 3 2 0 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

$$
4 \begin{array}{r}
061 \\
\frac{-4}{3}
\end{array}
$$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

> th hto
> 0402
> $\begin{array}{r}1609 \\ \frac{-8}{1}\end{array}$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1

Check: $4 \times 402+1=1,609$

Step 2-a remainder in the tens
Step 2 a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t o \\ 2 \longdiv { 2 } \\ \hline 2 \longdiv { 5 8 } \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t o \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18 .

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t o \\ 29 \\ 2 \longdiv { 5 8 } \\ =-\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Step 2-a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h^{h t \circ} \\ 2 \longdiv { 1 } 2 7 8 \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} h t \circ \\ 2 \longdiv { 1 } \\ 2 \longdiv { - \frac { 2 } { 0 } } \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{aligned} & h t \circ \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \end{aligned}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h t 0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t o \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -27 \\ & \hline 0 \quad 6 \\ & \hline \quad 18 \end{aligned}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{aligned} & h t \circ \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{array}{r} h t \circ \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{array}$ There are no more digits to drop down. The quotient is 139 .

\square

